

Project: _____

By: _____

Date: _____

A7 RATIONAL METHOD PIPE DESIGN FOR INLET CONTROL

Type of Channel	Type of Channel	Type of Channel
Elevation 1 _____ Elevation 2 _____ ΔY _____ ft L _____ ft	Elevation 1 _____ Elevation 2 _____ ΔY _____ ft L _____ ft	Elevation 1 _____ Elevation 2 _____ ΔY _____ ft L _____ ft

TIME OF CONCENTRATION

$$T_c = \frac{\Delta Y}{L} \times 100 \text{ min.} \quad T_c = \frac{\Delta Y}{L} \times 100 \text{ min.} \quad T_c = \frac{\Delta Y}{L} \times 100 \text{ min.}$$

$$T_c \text{ total} = \text{min.}$$

DETERMINATION OF "C" VALUE

Type of Land Use : _____

Range = _____ Choose C = _____

Reason for C :

_____**RAINFALL INTENSITY**

Tc total = _____ min. Return Period _____ years

$$\text{Rainfall Intensity, } I = \text{in/hr}$$

DRAINAGE AREA

Area = _____ sq. ft. / 43,560

$$\text{Drainage Area} = \text{acres}$$

DISCHARGE CALCULATION

$$Q = \frac{C}{I} \times \frac{A}{(in/hr)} \times \frac{1}{(acres)}$$

$$Q = \text{cfs}$$

PIPE SIZE AND HEADWATER

For RCP & HDPE use : n = 0.012

HW/D = _____ (scaling factor)

$$n = \text{_____} \quad s = \text{_____ \%}$$

$$Q = \text{_____ cfs} \quad \text{HW} = \frac{\text{_____}}{(\text{HW/D})} \times \frac{\text{_____}}{\text{Diameter}} / \frac{12}{\text{in}}$$

$$\text{Diameter} = \text{in.}$$

$$\text{Velocity} = \text{ft/s} \quad \text{HW} = \text{ft}$$